Two fast tree-creation algorithms for genetic programming

نویسنده

  • Sean Luke
چکیده

Genetic programming is an evolutionary optimization method that produces functional programs to solve a given task. These programs commonly take the form of trees representing LISP s-expressions, and a typical evolutionary run produces a great many of these trees. For this reason, a good tree-generation algorithm is very important to genetic programming. This paper presents two new tree-generation algorithms for genetic programming and for “strongly-typed” genetic programming, a common variant. These algorithms are fast, allow the user to request specific tree sizes, and guarantee probabilities of certain nodes appearing in trees. The paper analyzes these two algorithms and compares them with traditional and recently proposed approaches. Keywords— Genetic Programming, Population Initialization, Tree Creation, Subtree Mutation, Tree Growth, Introns, Bloat

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mixed Integer Programming Approach to Optimal Feeder Routing for Tree-Based Distribution System: A Case Study

A genetic algorithm is proposed to optimize a tree-structured power distribution network considering optimal cable sizing. For minimizing the total cost of the network, a mixed-integer programming model is presented determining the optimal sizes of cables with minimized location-allocation cost. For designing the distribution lines in a power network, the primary factors must be considered as m...

متن کامل

Application of Genetic Programming to Modeling and Prediction of Activity Coefficient Ratio of Electrolytes in Aqueous Electrolyte Solution Containing Amino Acids

Genetic programming (GP) is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. In this paper the systems containing amino ac...

متن کامل

Shuffled Frog-Leaping Programming for Solving Regression Problems

There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffl...

متن کامل

A Novel Experimental Analysis of the Minimum Cost Flow Problem

In the GA approach the parameters that influence its performance include population size, crossover rate and mutation rate. Genetic algorithms are suitable for traversing large search spaces since they can do this relatively fast and because the mutation operator diverts the method away from local optima, which will tend to become more common as the search space increases in size. GA’s are base...

متن کامل

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Evolutionary Computation

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2000